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ablator surface. The highly reflective surface would receive
the radiant heating peak of the superorbital re-entry and
give way to another high-emissivity layer as qRi/EA decreased
through one.
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Real-Gas Hypersonic Blunt-Body Flows

RUDOLPH J. SWIGAKT*
Lockheed Missiles and Space Company,

Huntsville, Ala.

Introduction

SEVERAL accurate methods have been developed for
analyzing inviscid hypersonic flows around blunt bodies

(see, e.g., Refs. 1-3). In most of these methods, however,
the gas is assumed to be perfect, i.e., one that obeys the
equation of state p = p RT, where p is the pressure, p the
density, R the gas constant, and T the temperature, and has a
constant ratio of specific heats. The use of such a state
equation is well justified in that accurate results are obtained
at flight Mach numbers for which molecular vibration, dissoci-
ation, and ionization in the flow between the detached bow
shock wave and the body is nonexistent or negligibly small.
However, as the flight Mach number and hence temperature
behind the shock increases, the vibrational energy modes
become excited and the gas begins to dissociate and ionize.
Upon excitation of the vibrational energy modes, the specific-
heat ratio no longer remains constant, and, with the onset
of dissociation, the relation p = p RT becomes inaccurate.
Thus, although perfect-gas results for flight Mach numbers
above those at which real-gas effects become significant still
yield important qualitative features of the flow field, quanti-
tative accuracy of thermodynamic and physical variables
decreases.

In order to increase the accuracy of existing inviscid equilib-
rium perfect-gas blunt-body solutions at flight Mach num-
bers above those at which real-gas effects become important,
several investigators have modified perfect-gas solutions
to handle real-gas effects. The Research and Advanced
Systems Branch of the Aero and Propulsion Sciences Group
at Norair Division of the Northrop Corporation has devel-
oped an equilibrium real-gas solution4 in which the perfect-
gas equation of state is replaced by Hansen's5 closed-form
expressions for the thermodynamic properties of equilibrium
air. Van Dyke's6 method of numerical integration of partial
differential equations is used by the Northrop group. Lomax
and Inouye7 of NASA-Ames have developed a solution com-
bining the equilibrium-air data of Hilsenrath and Beckett8

with the Van Dyke Solution. f
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Some of the results were made available to the author and are
used in this note for comparison purposes.

For real-gas solutions such as developed at Northrop and
Ames, a substantial amount of labor is required to incorporate
the real-gas equations of state into the basic solution. Han-
sen's expressions for the thermodynamic properties are
lengthy, and the NASA solution requires computing machine
storage of the Hilsenrath and Beckett tables, along with
table look-up and interpolation routines. Hence, it would
be advantageous if an approximate equilibrium real-gas
thermodynamic description could be developed that, when
used to replace perfect-gas thermodynamics in any accurate
blunt-body solution, would yield accuracy to within a few
percent of the more exact solutions at only a fraction of the
labor.

By assuming the equilibrium real-gas flow between the
shock and a blunt-nosed body to be one of constant specific-
heat ratio different from the undissociated freestream value,
an approximate equilibrium real-gas thermodynamic descrip-
tion is obtained. The author's blunt-body method9 is modi-
fied to accommodate the approximate thermodynamic
description of the actual equilibrium real-gas flow. Results
are compared with those obtained at Northrop and Ames,
and also with perfect-gas solutions.

Approximate Equilibrium Real-Gas Thermodynamics

As previously mentioned, the equilibrium real-gas flow
between the shock wave and body is assumed to be one of
constant specific-heat ratio. In addition, this gas is assumed
to obey the equation of state

h = [7/(7 — l)](p/p) + A (1)

where h is the enthalpy, p the pressure, A a constant, and 7
the adiabatic index defined by

7 = (d Inp/d lnp)s = a2p/p (2)
where s is the entropy and a the speed of sound. The as-
sumption of Eq. (1) for the equation of state in the shock
layer can be given physical justification by noting that it is
tantamount to assuming that each species in the shock layer
behaves as a perfect gas having the same ratio of specific
heats, 7. The constant A is then identifiable with the
dissociation-energy contribution to the enthalpy.

By use of the Second Law of Thermodynamics it can be
proven that, for a gas having the state equation, Eq. (1), the
entropy s is a function of p/py only. Thus, since entropy is
conserved along streamlines in equilibrium flow, introduction
of a stream function into the governing equations of fluid
mechanics yields

P/P7 = (3)

where ^ is the stream function and the functional form of g
is determined from the boundary conditions at the shock
wave. Then, modification of an accurate blunt-body solu-
tion such as that of Van Dyke1 or Swigart9 reduces to modi-
fication of the shock-wave boundary conditions and the func-
tion gty). For the real-gas description under consideration,
the density ratio across the shock wave becomes
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where B is a parameter characterizing the shock-wave shape,6'9
C = 1 — B, % is distance along the shock, M is the freestream
Mach number, A = A/qm

2, where g^ is the freestream speed,
and 7 a, is the specific-heat ratio in the freestream. The
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derivative of the stream function normal to the shock im-
mediately behind the shock is given by
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and the function of g(\l/) is determined to be
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For details of the derivations of these equations, and the
modification of the perfect-gas blunt-body solution, see
Swigart.10

Determination of y

Since the gas between the shock and body is assumed to
have a constant ratio of specific heats 7, and the governing
differential equations and boundary conditions at the shock
wave depend parametrically on 7, a value for this quantity
must be determined before the flow field can be obtained.

Use of the conservation equations in integral form, along
with state data in tabular or graphical form enables a precise
determination of 7 at any point immediately behind the
shock and at the stagnation and sonic points on the body.
Use of the approximate state equation, Eq. (1), then enables
corresponding values of the constant A to be determined at

these points. For the cases investigated, the assumed con-
stant values of 7 and A in the shock layer were taken to be
the average of those four values determined by using the con-
servation equations in integral form, a Mollier diagram for
equilibrium air,10 and Eq. (1) immediately behind the shock
along the stagnation streamline, at the stagnation point on
the body, and at the sonic points immediately behind the
shock and on the body.

Results and Discussions
In order to compare the results of the present method with

those of the more exact analyses4'7 previously discussed,
solutions were obtained for flow past spheres at altitudes
of 100,000, 200,000, and 300,000 ft at freestream Mach num-
bers M of 12 and 25. Results for the Mach 25, 200,000
ft case are compared with those of Northrop/Norair and
NASA-Ames in Figs. 1 and 2. Figure 1 compares results
of the present method with those of Norair for body shapes,
sonic lines, and the shock wave supported by a sphere in each
case. Figure 2 compares the same quantities with the NASA-
Ames results. Note that the shock wave supported by a
sphere as determined by the present method begins to deviate
from those of the more exact methods at a point beyond the
sonic point on the shock wave, but still in the region where the
right-running characteristics emanating from the shock wave
intersect the sonic line and hence affect the subsonic region.
Sonic line agreement is good, and the stand-off distance is
slightly larger (3.5%) than that of the Norair solution, but
agrees very well with the NASA-Ames result. Similar re-
sults are obtained for the other cases.11

In order to assess the relative effects of having a freestream
ratio of specific heats different from the constant value se-
lected in the shock layer, and of having a value of the con-
stant, A, other than zero, the solution of the present method
at Mach 25, 200,000 ft altitude is compared in Fig. 3 with
two perfect-gas solutions and with a solution for which the
specific-heat ratios in the shock layer and freestream are
different, but A is zero. These comparisons yield some
interesting results. Note that the solutions coincide to
the scale of the plot for a perfect gas having a ratio of specific
heats constant at the value in the shock layer (and, of course,
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Fig. 1 Comparison of body shapes and sonic lines; M
25, x = 200,000 ft.

Fig. 2 Comparison of body shapes and sonic lines; M
25, z = 200,000 ft.
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Fig. 3 Comparison of body shapes and sonic lines; M =
25, a = 200,000 ft.

A = 0), and for a specific-heat ratio in the shock layer different
from the freestream value, again with A = 0. Further note
the large difference between these coincident solutions and
the solution for a perfect gas having a ratio of specific heats
equal to the freestream value, and the difference between
the coincident solutions and that of the present method.
From these comparisons one may conclude that the main
parameters affecting the solution are the ratio of specific
heats in the shock layer and the constant A, whereas the
value of the freestream specific-heat ratio has relatively little
affect. Considering now the perfect-gas solution having
7 = 1.1597 and the solution by the present method, one
notes that, even though the shock waves supported by a
sphere in both cases are coincident, the body and sonic-line
positions are significantly different. Hence, large errors can
be incurred in approximating a real-gas flow by a perfect
gas having a constant ratio of specific heats corresponding to
an average value of the actual flow in the shock layer. Even
larger error is incurred by assuming the specific-heat ratio
to be constant at the freestream value. However, the error
is seen to be small in approximating a real-gas flow by one
having a constant ratio of specific heats different from that
of freestream, along with an appropriate value of the con-
stant A as determined by Eq. (1) and the relation A = A/g^2.
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Heat Transfer to a Sphere for Free
Molecule Flow of a Nonimiform Gas
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Theoretical relations are obtained for the heat
transfer to a sphere for the free molecule flow of a
nonuniform gas. The sphere diameter is assumed
to be small compared to the molecular mean free
path, and the gas flow is assumed to have arbitrary
viscous stress and heat flux terms present, such as
the case encountered in a boundary layer. The
effect of these nonuniformities on the heat transfer
to the sphere and its equilibrium temperature are
determined theoretically.

Introduction

THE purpose of this analysis is to obtain theoretical
relations for the heat transfer to spheres in a free molecule

flow of a nonuniform gas. A nonuniform gas is defined as
one whose distribution function deviates from the Max-
wellian equilibrium distribution because of the presence of
viscous stresses and heat flux terms. This problem arose in
connection with free molecule spherical probes used for sur-
veying boundary layers in supersonic low-density nozzles2

as a direct extension to similar University of California free
molecule cylindrical probes.1 The method of approach
closely parallels the analysis used by Bell and Schaaf1 in the
case of cylinders.

Procedure

The energy balance for a differential area dA in the absence
of radiation is written as

dQ = - dEr (D
where dEi is the incident energy flux, dEr the re-emitted
energy flux, and dQ the net heat loss per unit time from the
surface element. The thermal accommodation coefficient
is defined as

i - dEr)/(dEi - dEw) (2)
where dEw is the energy flux that would be re-emitted from
the surface if all molecules were re-emitted with a Max-
wellian distribution corresponding to the surface tempera-
ture Tw. Introducing this definition in Eq. (1), one gets

(l/a)dQ = dEi - dEw

The incident energy flux per unit area is
(3)

dA J-coJ-coJo
+ v'* + w'2)u'fdu'dv'dwf (4)
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